a2 United States Patent

Anderson-Sprecher et al.

US009240070B2

US 9,240,070 B2
Jan. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

METHODS AND SYSTEMS FOR VIEWING
DYNAMIC HIGH-RESOLUTION 3D
IMAGERY OVER A NETWORK

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Peter Elving Anderson-Sprecher, Los
Altos Hills, CA (US); Chaitanya
Gharpure, Santa Clara, CA (US);
Anthony Gerald Francis, Jr., San Jose,
CA (US); James Joseph Kuffner, Jr.,
Sunnyvale, CA (US)

Assignee: Google Inc., Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 141 days.

Appl. No.: 14/100,290

Filed: Dec. 9, 2013

Prior Publication Data

US 2015/0161823 Al Jun. 11, 2015

Int. CL.

GO6T 15/00 (2011.01)

U.S. CL

CPC GO6T 15/005 (2013.01); GO6T 2200/16

(2013.01)

Field of Classification Search
CPC ..o HO4N 1/00458; HO4N 2201/212;
HO4N 5/23245; HO04N 1/00161; Y10S
707/99933; GO6T 19/003
See application file for complete search history.

400

¢

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0180879 Al* 12/2002 Shiohara 348/333.05

2002/0194589 Al* 12/2002 Cristofalo etal. 725/32

2009/0215477 Al* 82009 Leeetal. 455/466

2011/0312278 Al* 12/2011 Matsushita et al. . .. 455/66.1

2013/0031589 Al* 1/2013 Casanovaetal. 725/93

2013/0246917 Al* 9/2013 Camecovvvenne. 715/716
OTHER PUBLICATIONS

Jason Holt, Swivel Viewer, an open source embeddable album
viewer, Jul. 29, 2010, downloaded from http://google-opensource.
blogspot.com/2010/07/swivel-viewer-open-source-embeddable.
html on Jun. 27, 2015.*

* cited by examiner

Primary Examiner — Haixia Du
(74) Attorney, Agent, or Firm — McDonnell Boehnen
Hulbert & Berghoff LL.P

(57) ABSTRACT

An example method may involve a computing device receiv-
ing low-resolution images of an object and high-resolution
images of the object. The method may also involve causing a
3D image viewer to display a first high-resolution image of
the object. The method may further involve receiving an input
associated with adjusting a view of the object in the 3D image
viewer. The method may still further involve, based on the
input, causing the 3D image viewer to sequentially display at
least a portion of the low-resolution images so as to adjust the
view of the object in the 3D image viewer. The method may
yet still further involve, in response to a completion of the
sequential display, causing the 3D image viewer to display a
second high-resolution image of the object that corresponds
to a respective low-resolution image of the object displayed at
the completion of the sequential display.

18 Claims, 9 Drawing Sheets

RECEIVING A PLURALITY OF LOW-RESOLUTION IMAGES OF AN
OBJECT AND A PLURALITY OF HIGH-RESOLUTION IMAGES OF THE
OBJECT, WHERE THE PLURALITY OF LOW-RESOLUTION IMAGES
AND THE PLURALITY OF HIGH-RESOLUTION IMAGES ARE INDEXED
SUCH THAT A RESPECTIVE LOW-RESOLUTION IMAGE OF THE
OBJECT CORRESPONDS TO A RESPECTIVE HIGH-RESOLUTION
IMAGE OF THE OBJECT

402

CAUSING A 3D IMAGE VIEWER TO DISPLAY A FIRST HIGH-
RESOLUTION IMAGE OF THE OBJECT FROM THE PLURALITY OF
HIGH-RESOLUTION IMAGES

|

404

RECEIVING AN INPUT ASSOCIATED WITH ADJUSTING A VIEW OF
THE OBJECT IN THE 3D IMAGE VIEWER

|

406

BASED ON THE INPUT, CAUSING THE 3D IMAGE VIEWER TO
SEQUENTIALLY DISPLAY AT LEAST A PORTION OF THE PLURALITY
OF LOW-RESOLUTION IMAGES OF THE OBJECT SO AS TO ADJUST

THE VIEW OF THE OBJECT IN THE 3D IMAGE VIEWER

408

l

{N RESPONSE TO A COMPLETION OF THE SEQUENTIAL DISPLAY,
CAUSING THE 3D IMAGE VIEWER TO DISPLAY A SECOND HIGH-
RESOLUTION IMAGE OF THE OBJECT THAT CORRESPONDS 7O A
RESPECTIVE LOW-RESOLUTION IMAGE DISPLAYED AT THE
COMPLETION OF THE SEQUENTIAL DISPLAY

™

410

US 9,240,070 B2

Sheet 1 of 9

Jan. 19, 2016

U.S. Patent

I JH¥NOId

901

aseqejeq

@,

801
jobae]

ndino

k44"
JOMBIA

JIa1apuUdYy
|SPON
eleq 102lqo

01
asunog

induj

. — 41

(174} 9l 1085892014
uonesiddy Aieigiy |epo

sjeualey soydel eyeq 129lqo

gt vil orr

uonesjddy Xapuj yoiesg lapjing |9pow
iapeys R SojjuRWOg)
FOT 419A108

001

US 9,240,070 B2

Sheet 2 of 9

Jan. 19, 2016

U.S. Patent

¢ 34N9Oid

90¢
aseqejeq

<=

$0C
10S5920.1d

Z02 J9AI9g

sidv

(7%
9oeLI9)U] J9)SBWGOAN

apos Aejdsiqg

é
N\

(4 %4
JOMaIA

pappaquig

01¢
lasmoig qop

80¢C
a31A2(JUdlD

00¢

U.S. Patent Jan. 19, 2016 Sheet 3 of 9 US 9,240,070 B2

302

™
300

FIGURE 3

[.

] [Internet Address]

U.S. Patent Jan. 19, 2016 Sheet 4 of 9 US 9,240,070 B2

400

N

RECEIVING A PLURALITY OF LOW-RESOLUTION IMAGES OF AN
OBJECT AND A PLURALITY OF HIGH-RESOLUTION IMAGES OF THE
OBJECT, WHERE THE PLURALITY OF LOW-RESOLUTION IMAGES
AND THE PLURALITY OF HIGH-RESOLUTION IMAGES ARE INDEXED
SUCH THAT A RESPECTIVE LOW-RESOLUTION IMAGE OF THE
OBJECT CORRESPONDS TO A RESPECTIVE HIGH-RESOLUTION 402

IMAGE OF THE OBJECT

A4
CAUSING A 3D IMAGE VIEWER TO DISPLAY A FIRST HIGH-
RESOLUTION IMAGE OF THE OBJECT FROM THE PLURALITY OF

HIGH-RESOLUTION IMAGES \
404

Y

RECEIVING AN INPUT ASSOCIATED WITH ADJUSTING A VIEW OF
THE OBJECT IN THE 3D IMAGE VIEWER \

406

h 4

BASED ON THE INPUT, CAUSING THE 3D IMAGE VIEWER TO
SEQUENTIALLY DISPLAY AT LEAST A PORTION OF THE PLURALITY
OF LOW-RESOLUTION IMAGES OF THE OBJECT SO AS TO ADJUST \

THE VIEW OF THE OBJECT IN THE 3D IMAGE VIEWER 408

Y

IN RESPONSE TO A COMPLETION OF THE SEQUENTIAL DISPLAY,
CAUSING THE 3D IMAGE VIEWER TO DISPLAY A SECOND HIGH-
RESOLUTION IMAGE OF THE OBJECT THAT CORRESPONDS TO A
RESPECTIVE LOW-RESOLUTION IMAGE DISPLAYED AT THE \
COMPLETION OF THE SEQUENTIAL DISPLAY 410

FIGURE 4

US 9,240,070 B2

Sheet 5 of 9

Jan. 19, 2016

U.S. Patent

VS 34Nl

90S

/»f.

sssssssssssssssss -
“ ONIAVO1 i

=1

U.S. Patent Jan. 19, 2016 Sheet 6 of 9 US 9,240,070 B2

I
i)

FIGURE 5C

U.S. Patent Jan. 19, 2016 Sheet 7 of 9 US 9,240,070 B2

FIGURE 5E

US 9,240,070 B2

Sheet 8 of 9

Jan. 19, 2016

U.S. Patent

9 F4NOI4

1 42]

(agH ~b-9) abeioyg
9]JBAOWIAY-UON

9
(anq/ao
‘6 2) obreiolg
ajqeAoway

09 sooiA9(g abeiolg

—
=

2.9
ﬁ Jajjonuon
YIOM]ON

049

$92BLIDJU] UOHEBIIUNWIWOYD

089
(s)eoinaqg N, V49
Bupndwon m .Amvton_
Bwo || o9
_
_
_
_
_
099 ._ | 59
(s)avinag () (shuod
Aejdsig AV

Hun
Buissosoud
sojydeis

cs9

_ s

s

Io[|0u09

Gi9

Aowapy

I

<

-,

059 sedepauj IndinQ

019 10S$9204d

GZ9
eleq ae

Z9 eleq weiboid

€29
wyuobly ae

ZZ9 uonesijddy

NVYH/NOY

0zZ9 fiowep walsAg

m— — — — — — w— — o—— — — w— ow— — w— wm— m— w—— ww— m— v mw— — w— mm— m— — —— w— — — — — —— — — — — —

U.S. Patent Jan. 19, 2016 Sheet 9 of 9 US 9,240,070 B2

's A

Computer Program Product 700

[Signal Bearing Medium 701

{ ™)

Program Instructions 702

e receiving a plurality of low-resolution images of an object and a
plurality of high-resolution images of the object, where the
plurality of low-resolution images and the plurality of high-
resolution images are indexed such that a respective low-
resolution image of the object corresponds to a respective high-
resolution image of the object

¢ causing a 3D image viewer to display a first high-resolution
image of the object from the plurality of high-resolution images

* receiving an input associated with adjusting a view of the object
in the 3D image viewer

e based on the input, causing the 3D image viewer to sequentially
display at least a portion of the plurality of low-resolution
images of the object so as to adjust the view of the object in the
3D image viewer

+ inresponse to a completion of the sequential display, causing
the 3D image viewer to display a second high-resolution image
of the object that corresponds to a respective low-resolution
image displayed at the completion of the sequential display

r _______ -~ r _______ -~ r _______ -~

| Computer | | ézr:%‘;tg{e | | Communications '

| Readable Medium | | (b Medium |
[Medium [|

I 703 I 704 | 705

o e e __ £V _______ |

FIGURE 7

US 9,240,070 B2

1
METHODS AND SYSTEMS FOR VIEWING
DYNAMIC HIGH-RESOLUTION 3D
IMAGERY OVER A NETWORK

BACKGROUND

In computer graphics, three-dimensional (3D) modeling
involves generation of a representation of a 3D surface of an
object. The representation may be referred to as a 3D object
data model, and can be rendered or displayed as a two-dimen-
sional (2D) image via 3D rendering or displayed as a 3D
image. 3D object data models represent a 3D object using a
collection of points in 3D space, connected by various geo-
metric entities such as triangles, lines, curved surfaces, etc.
Various techniques exist for generating 3D object data mod-
els utilizing point clouds and geometric shapes, for examples.

Being a collection of data, 3D models can be created by
hand, algorithmically, or by scanning objects, for example. As
anexample, an artist may manually generate a 3D image of an
object that can be used as the 3D model. As another example,
a given object may be scanned from a number of different
angles, and the scanned images can be combined to generate
the 3D image of the object. As still another example, an image
of'an object may be used to generate a point cloud that can be
algorithmically processed to generate the 3D image.

3D object data models may include solid models that
define a volume of the object, or may include shell or bound-
ary models that represent a surface (e.g. the boundary) of the
object. Because an appearance of an object depends largely
on an exterior of the object, boundary representations are
common in computer graphics.

3D models are used in a wide variety of fields, and may be
rendered and displayed using a number of different types of
interfaces. Example interfaces may provide functionality to
enable interaction between a user and the 3D models.

SUMMARY

In one aspect, a method is provided that involves receiving,
ata computing device, a plurality of low-resolution images of
an object and a plurality of high-resolution images of the
object, where the plurality of low-resolution images and the
plurality of high-resolution images are indexed such that a
respective low-resolution image of the object corresponds to
a respective high-resolution image of the object. The method
may also involve causing a 3D image viewer to display a first
high-resolution image of the object from the plurality of
high-resolution images. The method may further involve
receiving an input associated with adjusting a view of the
object in the 3D image viewer. The method may still further
involve based on the input, causing the 3D image viewer to
sequentially display at least a portion of the plurality of low-
resolution images of the object so as to adjust the view of the
object in the 3D image viewer. The method may yet still
further involve, in response to a completion of the sequential
display, causing the 3D image viewer to display a second
high-resolution image of the object that corresponds to a
respective low-resolution image displayed at the completion
of the sequential display.

In another aspect, a non-transitory computer-readable
medium having stored therein instructions, that when
executed by a computing device, cause the computing device
to perform functions is provided. The functions may include
receiving a plurality of low-resolution images of an object
and a plurality of high-resolution images of the object, where
the plurality of low-resolution images and the plurality of
high-resolution images are indexed such that a respective

10

15

20

25

30

35

40

45

50

55

60

65

2

low-resolution image of the object corresponds to a respec-
tive high-resolution image of the object. The functions may
also include causing a 3D image viewer to display a first
high-resolution image of the object from the plurality of
high-resolution images. The functions may further include
receiving an input associated with adjusting a view of the
object in the 3D image viewer. The functions may still further
include, based on the input, causing the 3D image viewer to
sequentially display at least a portion of the plurality of low-
resolution images of the object so as to adjust the view of the
object in the 3D image viewer. The functions may yet still
further include, in response to a completion of the sequential
display, causing the 3D image viewer to display a second
high-resolution image of the object that corresponds to a
respective low-resolution image displayed at the completion
of the sequential display

In yet another aspect, a system is provided that includes at
least one processor, and data storage comprising instructions
executable by the at least one processor to cause the system to
perform functions. The functions may include receiving a
plurality of low-resolution images of an object and a plurality
ot high-resolution images of the object, where the plurality of
low-resolution images and the plurality of high-resolution
images are indexed such that a respective low-resolution
image of the object corresponds to a respective high-resolu-
tion image of the object. The functions may also include
causing a 3D image viewer to display a first high-resolution
image of the object from the plurality of high-resolution
images. The functions may further include receiving an input
associated with adjusting a view of the object in the 3D image
viewer. The functions may still further include, based on the
input, causing the 3D image viewer to sequentially display at
least a portion of the plurality of low-resolution images of the
object so as to adjust the view of the object in the 3D image
viewer. The functions may yet still further include, in
response to a completion of the sequential display, causing
the 3D image viewer to display a second high-resolution
image of the object that corresponds to a respective low-
resolution image displayed at the completion of the sequen-
tial display

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the figures and the following detailed
description.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an example system for object data mod-
eling.

FIG. 2 illustrates an example system for providing a 3D
image viewer.

FIG. 3 illustrates an example display of a 3D image viewer.

FIG. 4 is a block diagram of an example method.

FIGS. 5A-5E illustrate example implementations of the
example method.

FIG. 6 is a functional block diagram illustrating an
example computing device used in a computing system thatis
arranged in accordance with at least some embodiments
described herein.

FIG. 7 is a schematic illustrating a conceptual partial view
of an example computer program product that includes a
computer program for executing a computer process on a

US 9,240,070 B2

3

computing device, arranged according to at least some
embodiments presented herein.

DETAILED DESCRIPTION

Example methods and systems are described herein. It
should be understood that the words “example” and “exem-
plary” are used herein to mean “serving as an example,
instance, or illustration” Any embodiment or feature
described herein as being an “example” or “exemplary” is not
necessarily to be construed as preferred or advantageous over
other embodiments or features. In the following detailed
description, reference is made to the accompanying figures,
which form a part thereof. In the figures, similar symbols
typically identify similar components, unless context dictates
otherwise. Other embodiments may be utilized, and other
changes may be made, without departing from the scope of
the subject matter presented herein.

The example embodiments described herein are not meant
to be limiting. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the figures, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

The display of dynamic high-resolution 3D imagery is a
feature found in online rich media applications. For example,
an online store or advertisement may provide an interactive
3D viewer associated with a given product, and a 3D image or
other 3D imagery of the given product can be shown in the 3D
viewer. As another example, a search engine may provide
such a viewer with a 3D image associated with a search query.
Other examples are also possible.

When displaying high-resolution imagery over a network
on a computing device, that computing device’s bandwidth
and other specifications can limit the level of resolution that
can be displayed without introducing discernible delays. In
some examples, a computing device with limited bandwidth
may be able to quickly download data (e.g., a 3D object data
model) associated with rendering low-resolution imagery, but
not high-resolution imagery, and present (e.g., stream) that
imagery to a user of the computing device with no discernible
delay.

As such, disclosed herein are methods and systems for
viewing dynamic high-resolution 3D imagery over a net-
work. Such methods may be performed by a computing
device so as to provide smooth, dynamic high-resolution
imagery to a user without impeding interactivity while also
providing high-resolution imagery when viewing statically.
In some embodiments, the methods may be performed with
existing browser technology rather than with plugins such as
Flash. Other embodiments are possible as well.

An example system may be implemented in or take the
form of one or more client/computing devices, such as mobile
phones, tablet computers, laptop computers, wearable com-
puting devices, televisions, or computing appliances, among
others, or subsystems of such devices. Further, an example
system may take the form of non-transitory computer read-
able medium, which has program instructions stored thereon
that are executable by at a processor to provide the function-
ality described herein.

Referring now to the figures, FIG. 1 illustrates an example
system 100 for object data modeling. The system 100
includes an input source 102 coupled to a server 104 and a
database 106. The server 104 is also shown coupled to the
database 106 and an output target 108. The system 100 may
include more or fewer components, and each of the input

25

30

40

45

55

4

source 102, the server 104, the database 106, and the output
target 108 may comprise multiple elements as well, or each of
the input source 102, the server 104, the database 106, and the
output target 108 may be interconnected as well. Thus, one or
more of the described functions of the system 100 may be
divided up into additional functional or physical components,
or combined into fewer functional or physical components. In
some further examples, additional functional and/or physical
components may be added to the examples illustrated by FIG.
1.

Components of the system 100 may be coupled to or con-
figured to be capable of communicating via a network (not
shown), such as a local area network (LAN), wide area net-
work (WAN), wireless network (e.g., a Wi-Fi network), or
Internet, for example. In addition, any of the components of
the system 100 may be coupled to each other using wired or
wireless communications. For example, communication
links between the input source 102 and the server 104 may
include wired connections, such as a serial or parallel bus, or
wireless links, such as Bluetooth, IEEE 802.11 (IEEE 802.11
may refer to IEEE 802.11-2007, IEEE 802.11n-2009, or any
other IEEE 802.11 revision), or other wireless based commu-
nication links.

The input source 102 may be any source from which a 3D
object data model may be received. In some examples, 3D
model acquisition (shape and appearance) may be achieved
by working with venders or manufacturers to scan objects in
3D. For instance, structured light scanners may capture
images of an object and a shape of the object may be recov-
ered using monochrome stereo cameras and a pattern projec-
tor. In other examples, a high-resolution DSLR camera may
be used to capture images for color texture information. In
still other examples, a raw computer-aided drafting (CAD) set
of drawings may be received for each object. Thus, the input
source 102 may provide a 3D object data model, in various
forms, to the server 104. As one example, multiple scans of an
object may be processed into a merged mesh and assets data
model, and provided to the server 104 in that form.

The server 104 includes a model builder 110, an object data
model processor 112, a semantics and search index 114, a
graphics library 116, a shader application 118, a materials
application 120, and an object data model renderer/viewer
122. Any of the components of the server 104 may be coupled
to each other. In addition, any components of the server 104
may alternatively be a separate component coupled to the
server 104. The server 104 may further include a processor
and memory including instructions executable by the proces-
sor to perform functions of the components of the server 104,
for example.

The model builder 110 receives the mesh data set for each
object from the input source 102, which may include a data set
defining a dense surface mesh geometry, and may generate a
combined model of the object in 3D. For example, the model
builder 110 may perform coherent texture unwrapping from
the mesh surface, and determine textures of surfaces emu-
lated from the geometry.

The object data model processor 112 may also receive the
mesh data set for each object from the input source 102 and
generate display meshes. For instance, the scanned mesh
images may be decimated (e.g., from 5 million to 120,000
surfaces) utilizing texture-preserving decimation. Texture
map generation can also be performed to determine color
texture for map rendering. Texture map generation may
include using the mesh data sets H that have colors butno UV
(coordinate system of a 2D texture space) unwrapping to
generate a mesh D with UV unwrapping but no colors. As an
example, for a single output texture pixel of an image pro-

US 9,240,070 B2

5

cessing may include, for a given point in UV determine a
triangle in the mesh’s UV mapping D, and using triangle-
local coordinates, move to an associated 3D point on the
mesh. A bidirectional ray may be cast along the triangle’s
normal to intersect with the mesh H, and color, normal and
displacement may be used for an output. To generate an entire
texture image, each pixel in the image can be processed.

The semantics and search index 114 may receive captured
images or processed images that have been decimated and
compressed, and may perform texture resampling and also
shape-based indexing. For example, for each object, the
semantics and search index 114 may index or label compo-
nents of the images (e.g., per pixel) as having a certain texture,
color, shape, geometry, attribute, etc. The semantics and
search index 114 may receive the 3D object data model file or
files comprising the 3D object data model from the model
builder 110 or the object data model processor 112, and may
be configured to label portions of the file or each file indi-
vidually with identifiers related to attributes of the file.

In some examples, the semantics and search index 114 may
be configured to provide annotations for aspects of the 3D
object data models. For instance, an annotation may be pro-
vided to label or index aspects of color, texture, shape, appear-
ance, description, function, etc., of an aspect of a 3D object
data model. Annotations may be used to label any aspect of an
image or 3D object data model, or to provide any type of
information. Annotations may be performed manually or
automatically. In examples herein, an annotated template of
an object in a given classification or category may be gener-
ated that includes annotations, and the template may be
applied to all objects in the given classification or category to
apply the annotations to all objects.

The graphics library 116 may be configured to provide data
in a form for display on a computing device. The graphics
library 116 may have stored images associated with an object
(i.e., 2D images), and the images together may comprise a 3D
object data model. In some examples, the images together
may comprise a video of the object, where each image is a
frame of the video. In accordance with the methods described
herein, the graphics library 116 may have stored low-resolu-
tion and high-resolution versions of the same images of a
given object, with each low-resolution image having a corre-
sponding high-resolution image of the same aspect or view of
the given object.

In practice, a computing/client device may download the
images from the graphics library 116 or the database 106 to be
displayed (e.g., streamed) on the computing/client device in
the 3D image viewer. The graphics library 116 may provide
the images in a form where a 3D object data model can be
rendered to generate a 3D image of the given object. The 3D
image of the given object may be displayed on a browser, for
example, suchas ina 3D image viewer. In some examples, the
graphics library 116 may include a WebGL or OpenGL mesh
compression to reduce a mesh file size.

The shader application 118 may be configured to apply a
shader to portions of the 3D object data model file or files of
the 3D object data model according to the indexes of the file
(as labeled by the semantics and search index 114) to generate
a 3D image. The shader application 118 may be executed to
apply a shader from a number of shaders according to the
indexes of the file. The shader may include information
related to texture, color, appearance, etc., of a portion of the
3D image.

In one example, the shader application 118 may be
executed to render an image with shading attributes as defined
by indexes of the files. For example, objects with multiple

20

40

45

55

6

surfaces may have different attributes for each surface, and
the shader application 118 may be executed to render each
surface accordingly.

The materials application 120 may be configured to apply
a material to portions of the 3D object data model file or to
files of the 3D object data model according to the indexes of
the file (as labeled by the semantics and search index 114) to
generate a 3D image. The materials application 120 may be
executed to apply a material from a number of materials
according to the indexes of the file. The materials application
may apply any material, such as leather, metal, wood, etc., so
as to generate an appearance of a portion of the 3D image.

In one example, the materials application 120 may access
a database that includes information regarding a number of
reference materials (e.g., brass, fur, leather), and objects with
multiple materials may be separated into distinct portions. As
an example, a hood on a car may include a hood ornament,
and the hood may be painted while the ornament may have a
chrome finish. The materials application 120 and the shader
application 118 can be executed to identify two separate
materials (e.g., the painted hood and the chrome hood orna-
ment) and render each material with an appropriate shader.

The object data model renderer/viewer 122 may receive the
3D object data model file or files and execute the shader
application 118 and the materials application 120 to render
the 3D object data model in order to generate a viewable 3D
image. The object data model renderer/viewer 122 may be
implemented using WebGL within a web browser, or
OpenGL, for example.

The database 106 may store all data sets for a 3D object
data model in any number of various forms from raw data
captured to processed data for display.

The output target 108 may include a number of different
targets, such as a webpage on the Internet, a search engine, a
database, etc. The output target 108 may include a 3D image
viewer that enables product advertisements or product
searches based on the 3D image.

In examples herein, the system 100 may be used to acquire
data of an object, process the data to determine a 3D object
data model, and render the 3D object data model so as to
generate a corresponding 3D image for display.

FIG. 2 illustrates an example system 200 for providing a
three-dimensional (3D) image viewer. The system may
include a server 202 including a processor 204 and database
206. The server 202 may be configured to provide informa-
tion associated with 3D object data models to one or more
output targets. For example, the processor 204 may be
coupled to the database 206, and the database 206 may
include information associated with a plurality of 3D object
data models. In one instance, the server 202 may be config-
ured to serve a rendered 3D object data model and/or instruc-
tions for rendering a 3D object data model using graphics
software such as WebGL, OpenGL ES, etc., to a client device
208 so as to generate a 3D image to be displayed by the client
device 208. The 3D image may be a real-time, interactive 3D
image in some instances.

In one example, WebGL may be used to render a 3D object
data model within a web browser 210 on the client device 208.
For example, based on information received from the server
202, the web browser 210 may display a webpage having an
embedded viewer 212.

In some examples, the embedded viewer 212 may be
embedded directly within a webpage with JavaScript or other
scripting languages. For example, JavaScript may be used to
render an iframe (or inline frame). In other examples, the
embedded viewer 212 may be included within a webpage by
pasting a block or section of HTML into code for the

US 9,240,070 B2

7

webpage. The block of HTML may describe information
associated with parameters for customizing a 3D image
viewer. For instance, the block of HTML may identify a 3D
object data model to be accessed from the database 206 of the
server 202.

The system 200 may also include a webmaster interface
214. In some examples, a user may configure parameters of
the embedded viewer 212 using an application programming
interface (API) and the webmaster interface 214. For
example, the API may be a set of rules and specifications that
a user can follow to communicate with the server 202. In one
instance, the API may define vocabularies or function-calling
conventions associated with the processor 204 and database
206. In another instance, the API may include specifications
of routines, data structures, object classes, protocols, etc. to
communication with software in the server 202 using lan-
guage of the webpage (e.g., JavaScript). A user may select
options for a 3D image viewer or input code within a template
using the webmaster interface 214. Subsequently, a processor
may generate code according to the API specifications that a
user may paste into embedded language of a webpage. In
some instances, the webmaster interface 214 may provide a
high level interface (e.g., more simple) for controlling a 3D
image rendered using complex graphics software (e.g.,
WebGL).

In some examples, the generated code may include HTML
language referencing a version of the API and/or server host-
ing the API. In one example, the API may be a public API that
is freely available. In other examples, the APl may be licensed
to authorized retailers for a fee. For example, retailers may
wish to embed 3D image viewers within a webpage to display
a3D image of one or more of their products and seck a license
to use the APIL.

Using the webmaster interface 214, a user may define
parameters for customizing the embedded viewer 212 (e.g.,
size, background, user interface options, etc.) as well as
parameters for customizing/controlling a rendering of a 3D
object data model within the embedded viewer 212 (e.g., size,
animation, camera angle, orientation, zoom level, color, tex-
ture, shading, overlays, etc.). In some examples, the user may
be able to make a customized version of the embedded viewer
212 by coding a modified embedded viewer manually (e.g.,
without the user of the webmaster interface 214). This may
allow the user to incorporate advanced features specific to a
given type of embedded viewer.

In other examples, the webmaster interface 214 may facili-
tate providing an embedded viewer within a webpage by use
of drag-and-drop functionality. For example, a user may
selectan embedded viewer type from the webmaster interface
214, drag the selected viewer onto code for the webpage, and
drop the embedded viewer within the webpage code. In one
instance, the webmaster interface 214 may be provided on a
website. A user may select parameters associated with the
embedded viewer via the website, and drag-and-drop a cus-
tomized embedded viewer to a webpage. In a further
example, the user may be prompted to provide parameters
upon dropping an embedded viewer object onto code for a
webpage. For example, the user may be prompted to input
information about a size or color of the embedded viewer, a
3D object data model to be provided within the embedded
viewer, a pose or other parameters associated with the 3D
object data model, an animation sequence for a camera (such
as a series of camera poses and corresponding time stamps) or
the 3D object data model (such as a series of object poses and
time stamps), etc., after dropping the embedded viewer into a
block of code.

10

15

20

25

30

35

40

45

50

55

60

65

8

Thus, in some examples, the system 200 may enable a 3D
image viewer to be provided within a webpage and controlled
using high level API scripting.

In one example, a client device may be configured to
request information associated with rendering a 3D object
data model in a 3D image viewer from a server. For instance,
the request may be determined or triggered based on a portion
of embedded language provided within embedded language
of'a webpage.

The examples described herein relate to images of an
object that are displayed in a 3D image viewer used to view a
3D image of the object. The 3D image viewer may be pro-
vided by a webpage loaded by the computing device, and the
computing device may receive the images while loading the
webpage or upon executing a request to load the webpage.

FIG. 3 shows an example 3D image viewer 300 provided
within a webpage 302. The webpage 302 may include mis-
cellaneous information and content such as textual content,
graphics, hyperlinks, etc. The 3D image viewer may be con-
figured to render a 3D object data model of an object so as to
generate a 3D image 304. In some examples, the 3D image
viewer 300 may be configured to receive images, videos, and
or other information associated with rendering the 3D object
data model from a server to allow JavaScript or other scripting
languages to generate the 3D image 304 of the object within
the 3D image viewer.

In some examples, the 3D image viewer may be an inter-
active, real-time 3D image viewer, and the information asso-
ciated with rendering the 3D object data model may be com-
mands or function calls associated with WebGL, OpenGL ES,
or other graphics software for rendering real-time, interactive
3D graphics. In other examples, the 3D image viewer may be
a swivel viewer.

The 3D image 304 may be an interactive 3D graphic with
which a user may interact in the 3D image viewer. For
example, a user may pan, orbit, or zoom the 3D image 304 via
an input device or method. As such, the 3D image viewer 300
may include a zooming tool 306 such that a user may be able
to zoom in or out to focus on features or components of the 3D
image 304 displayed in the 3D image viewer 300. In other
instances, a user may zoom on components of the object by
scrolling a wheel of a mouse or providing a gesture on a
touchscreen. Other tools, capabilities, and functionalities are
also possible.

In some examples, the parameters for the 3D image viewer
and/or the 3D object data model may be input with reference
to an application programming interface (API) (e.g., HTML5
video API). As such, a computing device displaying the
webpage may load one or more libraries associated with the
API to provide functionality. In some embodiments, HTML5
video encoding may be used.

Markup language defining the webpage, such as HTML,
HTMLS5, and XML, among others, may include a portion of
code associated with the 3D image viewer to be embedded
within the webpage. For example, the 3D image viewer may
be embedded within an inline frame (iframe) of HMTL lan-
guage thus sandboxing the 3D image viewer from the
webpage and thereby enabling the 3D image viewer to be
modified on the webpage without requiring the entire
webpage to be updated, so as to decrease latency for the
webpage.

In some examples, the embedded language may define
customization parameters for the 3D image viewer such as
one or more embeddable buttons (such as buttons within the
3D image viewer that a user may click or select to cause a
function). For instance, clicking an embeddable button may
cause a 3D image within the 3D image viewer to spin or

US 9,240,070 B2

9

rotate. In another instance, an embeddable button may cause
a 3D image to snap or transition to a predetermined camera
position or object pose. In yet another instance, clicking an
embeddable button may cause the 3D image viewer to zoom
in on or zoom out from the 3D image. In other examples, the
embedded language may define customization parameters for
a 3D object data model to be rendered by the 3D image
viewer. For instance, parameters may define a 3D pose, a
camera position, a level of zoom, an animation sequence, an
annotation for a component of the 3D object data model, a
shader, a mesh resolution or size, etc., for the 3D object data
model.

In some examples, the embedded language may describe
when to load or render a 3D object data model within the 3D
image viewer. For example, the 3D object data model may be
rendered when the webpage is loaded. In one instance, a still
two-dimensional image may be loaded initially as a place-
holder/substitute for the 3D image while the 3D object data
model loads. In some instances, the still image may take a
fraction of a second to load, and may be replaced once the 3D
object data model has loaded (e.g., after 3 seconds).

The still image may be an image that is rendered by a server
based on the parameters associated with rendering the 3D
object data model and sent to the webpage. For instance, if
embedded language defines a background, level of zoom, and
camera position for the 3D object data model, a 3D image of
the 3D object data model having the appropriate background,
level of zoom, and camera position may be rendered from the
3D object data model in the server and sent to the webpage of
the client device. In other examples, the 3D object data model
may be rendered when a user clicks on the embedded viewer
or when a user scrolls down a webpage such that the embed-
ded viewer is visible.

In a further instance, an indication may be provided when
the 3D image has been loaded. For example, an animation
sequence may begin when the 3D image has been loaded. As
an example, the 3D image may rotate, hover, or wiggle, etc.,
after loading is complete.

In some examples, the location of the 3D image viewer
may be defined within the embedded language by reserving a
space in a web browser’s document object model (DOM).
The embedded language may also include instructions for
controlling interactions with the 3D image. For example,
JavaScript may define events based on user interface events
such as a click, double-click, mouse up, mouse down, etc.
over and/or near the 3D image. In one instance, clicking and
dragging may enable a user to rotate the 3D image. It is also
contemplated that the 3D image may be provided on other
interfaces (e.g., touchscreen interfaces) and may be con-
trolled with respect to input methods of the respective inter-
faces. Responses to any number of functionalities of the
embedded 3D image viewer may also be defined within the
embedded language.

FIG. 4 is a block diagram of an example method. Method
400 shown in FIG. 4 presents an embodiment of a method that
could be used by the systems 100 or 200 of FIGS. 1-2 or
components of the systems 100 or 200 such as the client
device 208, for example. Method 400 may include one or
more operations, functions, or actions as illustrated by one or
more of blocks 402-410. Although the blocks are illustrated in
a sequential order, these blocks may also be performed in
parallel, and/or in a different order than those described
herein. Also, the various blocks may be combined into fewer
blocks, divided into additional blocks, and/or removed based
upon the desired implementation.

In addition, for the method 400 and other processes and
methods disclosed herein, the block diagram shows function-

10

15

20

25

30

35

40

45

50

55

60

65

10

ality and operation of one possible implementation of present
embodiments. In this regard, each block may represent a
module, a segment, or a portion of program code, which
includes one or more instructions executable by a processor
or computing device for implementing specific logical func-
tions or steps in the process. The program code may be stored
on any type of computer readable medium, for example, such
as a storage device including a disk or hard drive. The com-
puter readable medium may include non-transitory computer
readable medium, for example, such as computer-readable
media that stores data for short periods of time like register
memory, processor cache and Random Access Memory
(RAM). The computer readable medium may also include
non-transitory media, such as secondary or persistent long
term storage, like read only memory (ROM), optical or mag-
netic disks, compact-disc read only memory (CD-ROM), for
example. The computer readable media may also be any other
volatile or non-volatile storage systems. The computer read-
able medium may be considered a computer readable storage
medium, for example, or a tangible storage device.

In addition, for the method 400 and other processes and
methods disclosed herein, each block in FIG. 4 may represent
circuitry that is wired to perform the specific logical functions
in the process.

Initially, at block 402, the method 400 includes receiving,
at a computing device (e.g., client device 208), a plurality of
low-resolution images of an object and a plurality of high-
resolution images of the object (e.g., 2D images of the object),
where the plurality of low-resolution images and the plurality
of high-resolution images are indexed such that a respective
low-resolution image of the object corresponds to a respec-
tive high-resolution image of the object. For instance, the
plurality of low-resolution images of the object and the plu-
rality of high-resolution images of the object may be associ-
ated with views of the object from predetermined positions
around at least one axis of rotation of the object. As such, the
object may be viewable in a 3D image viewer from 360
degree paths (e.g., a horizontal rotation around the object
and/or a vertical rotation over the top and bottom of the
object), or other, more complex paths around the object.
Further, the images may be indexed such that a given low-
resolution image of the object associated with a given view
corresponds to a given high-resolution image of the object
associated with the given view. The low and high resolution
images may then be used to render low and high resolution
versions of a 3D object data model.

The computing device may receive the images based on a
capability level of the computing device. The capability level
may be determined by the computing device itself or by other
computing devices (e.g., server 202). In some examples, the
capability level may include a bandwidth associated with the
computing device. For instance, the bandwidth associated
with the computing device may include storage bandwidths,
mobile telephone interface bandwidths, computer bus band-
widths, DRAM bandwidths, and/or digital audio bandwidths,
among other possibilities. Additionally or alternatively, the
capability level may include a screen resolution of the com-
puting device, processing capabilities of the computing
device, one or more APIs associated with a web browser of
the computing device, and/or other examples of capability
level not described herein. In some examples, the computing
device receiving the images may be further based on a capa-
bility level of a wired and/or wireless network (e.g., PAN,
WPAN, LAN, WAN, etc.) in which the computing device is
operating. The capability level may also include bandwidths
or other parameters associated with the communication links
noted above with respect to FIG. 1.

US 9,240,070 B2

11

In some examples, the computing device receiving the
images may be based on a comparison of the capability level
(of the computing device and/or of other network compo-
nents/devices) with a predetermined performance threshold.
For instance, if the capability level does not meet the perfor-
mance threshold, the computing device may receive at least a
portion ofthe low-resolutions before receiving one or more of
the high-resolution images. In such an instance, the comput-
ing device may be able to download and display low-resolu-
tion images of the object without discernible delay while
waiting for at least a portion of the high-resolution images to
be downloaded, thus allowing a user to more quickly begin
interacting with the 3D image provided in the 3D image
viewer. In other instances, when the capability level does not
meet the performance threshold, instructions for rendering
the 3D object data model may be altered. For example, the 3D
image viewer may be replaced by a swivel viewer, rather than
an interactive, real-time 3D image viewer.

Atblock 404, the method 400 includes causing a 3D image
viewer to display a first high-resolution image of the object
from the plurality of high-resolution images. In some
examples, upon receiving a request to provide a 3D image for
display in the 3D image viewer, the computing device may
receive at least a portion of the high-resolution images of the
object and display one of the high-resolution images of the
object (e.g., the first high-resolution images, as noted above)
while the computing device receives the low-resolution
images of the object and receives at least another portion of
the high-resolution images of the object. In some examples,
the first high-resolution image may be a predetermined
“default” image to be displayed as a representation of the
object.

In some examples, while the 3D image viewer is displaying
the first high-resolution image of the object and while the
computing device is receiving the plurality of low-resolution
images, the computing device may cause the 3D image
viewer to ignore inputs from a user of the computing device.
Such inputs may be representative of requests to adjust a view
of'the 3D image in the 3D image viewer or otherwise interact
with the 3D image in the 3D image viewer. When the user
provides inputs while the computing device is receiving the
plurality of low-resolution images, the 3D image viewer may
continue to display the first high-resolution image in response
to the inputs. In addition, the computing device may provide
for display a notification indicative of the receiving of the
plurality of low-resolution images of the object. For example,
the notification may take the form of a progress bar or a
“Loading” symbol/message. Other examples are also pos-
sible.

In some examples, once the computing device completes
its receiving of the plurality of low-resolution images, the
computing device may receive from a server or other device
that provides the low-resolution images an indication of a
completion of the receiving. In some embodiments, the indi-
cation of the completion may not be provided until all of the
plurality of low-resolution images has been received, but it is
also possible that, in other embodiments, the indication may
be provided once the computing device has received a portion
of the plurality of low-resolution images. In response to
receiving the indication, the computing device may then
cause the 3D image viewer to provide for display a notifica-
tion indicative of the completion. For instance, the notifica-
tion may take the form of an animation of the 3D image (e.g.,
an “animation sequence,” as noted above). The animation
may take the form of a 360 degree rotation of the 3D image
about an axis of rotation of the 3D image. The notification
may take other forms as well. After displaying the notification

10

15

20

25

30

35

40

45

50

55

60

65

12

indicative of the completion, the computing device may
enablethe 3D image viewer to begin receiving inputs from the
user.

As such, at block 406, the method involves receiving an
input associated with adjusting a view of the object in the 3D
image viewer (i.e., adjusting a view of the 3D image repre-
sentation of the object). As discussed above, the input may
include a request to zoom in on the 3D image, a request to
zoom out from the 3D image, a request to provide an alternate
view of the 3D image, and a request to rotate the 3D image
around at least one axis of rotation of the object. Other inputs
for adjusting a view of the 3D image or otherwise interacting
with the 3D image are possible as well.

At block 408, the method involves, based on the input,
causing the 3D image viewer to sequentially display at least a
portion of the plurality of low-resolution images of the object
s0 as to adjust the view of the object in the 3D image viewer.
By way of example, if the input provided by a user of the
computing device is a request to rotate the 3D image 90
degrees from the 3D image’s default position about a hori-
zontal axis of the 3D image, the computing device may cause
the 3D image viewer to sequentially display a portion of the
low-resolution images of the object so as to simulate the
90-degree rotation of the 3D image about a horizontal axis of
the 3D image. As such, the final image of the sequence that is
displayed may be a 90-degree rotated view of the object.
Further, the images that are sequentially displayed between
the first image and the final image are displayed at a high rate
so that the user perceives the rotation of the 3D image to be a
smooth rotation with little or no discernible delay. Other
examples are also possible.

In some examples, the portion of low-resolution and/or
high-resolution images that are displayed as part of the
sequential display may be based on various factors, such as a
size of the display of the computing device, a speed of the
input (e.g., a user clicking on the 3D image and moving the
3D image quickly with a mouse or other input device), and a
zoom level of the 3D image in the 3D image viewer (e.g.,
high-resolution images may be used for views that are
zoomed in and/or out past a given threshold). Other factors
are possible as well.

At block 410, the method involves, in response to a
completion of the sequential display, causing the 3D image
viewer to display a second high-resolution image of the object
that corresponds to a respective low-resolution image dis-
played at the completion of the sequential display. As such,
when the 3D image is not being interacted with by the user,
the user may view the 3D image in high-resolution rather than
in low-resolution. While the 3D image is being interacted
with, however, as described with respect to block 408, the
interaction may be simulated with a sequence of low-resolu-
tion images of the object (e.g., a low-resolution version of the
3D image). Accordingly, when the sequence of low-resolu-
tion images is completed, a high-resolution image of the
object that corresponds to the final low-resolution image of
the sequence may be displayed immediately.

In some examples, the method 400 with respect to blocks
404-410 may be performed while the computing device is
receiving a remainder of the plurality of high-resolution
images of the object (i.e., while the rest of the high-resolution
images are downloaded/buffered). When the computing
device has received the entire plurality of high-resolution
images, the computing device may receive an indication of a
completion of the receiving. Then, rather than the computing
device causing the 3D image viewer to sequentially display at
least a portion of the plurality of low-resolution images to
simulate an interaction with the 3D image, the computing

US 9,240,070 B2

13

device may cause the 3D image viewer to sequentially display
at least a portion of the plurality of high-resolution images to
simulate that same interaction. In other examples, a combi-
nation of both low-resolution imagery and high-resolution
imagery may still be used after the computing device has
received the plurality of high-resolution images. Other
examples are possible as well.

In some examples, due to the similarity between adjacent
frames in a sequence of images, using a delta-encoding for-
mat like video may achieve higher compression than when
treating all imagery separately. Accordingly, video compres-
sion and decompression techniques may be used to reduce a
data transmission size of the images that make up the 3D
object data model. By way of example, atleast a portion of the
plurality of low-resolution images may be combined into at
least one low-resolution video and the low-resolution video
may be compressed using any number of video compression
techniques. Likewise, at least a portion of the plurality of
high-resolution images may be combined into at least one
high-resolution video and the high-resolution video may be
compressed using any number of video compression tech-
niques. As such, the low-resolution images may comprise
frames of the low-resolution video, and the high-resolution
images may comprise frames of the high-resolution video.

In some examples, the video compressions may be lossy or
lossless, and may operate on square blocks of neighboring
pixels, or macroblocks. For instance, a video compression
codec may send only the difference within the macroblocks
between images or frames of the video. Other types of video
compression and codecs are also possible.

The compressed video may then be received by the com-
puting device. The computing device may use native decom-
pression video techniques (e.g., decompression techniques
commonly found within web browsers for streaming video)
to decompress the video. Subsequently, images representa-
tive of multiple views of the object may be recovered and
identified as individual images.

In some examples, a server may have stored a high-reso-
Iution video and a low-resolution video, but the high-resolu-
tion video may not be automatically butfered upon initiation
of the 3D image viewer. A particular frame of the high-
resolution video may be initially displayed once the comput-
ing device has received the low-resolution video, and when an
interaction with the 3D image begins, the computing device
may cause the 3D image viewer to sequentially display
frames of the low-resolution video (e.g., “play” at least a
portion of the low-resolution video) so as to simulate the
interaction with the 3D image. In some examples, the frames
of the low-resolution video may be displayed at a frame rate
of about 30-60 frames per second.

Once the interaction is completed, the high-resolution
video seeks to the desired frame that corresponds to the last
low-resolution frame of the sequential display, and the
desired high-resolution frame replaces the last low-resolution
frame. In some examples, the desired high-resolution frame
may be displayed immediately, while in other examples, the
last low-resolution frame may fade into the desired high-
resolution frame. In some examples, the input to interact with
the 3D image may be a request to skip to a given frame of the
low-resolution video, in which case the computing device
may cause the 3D image viewer to display a respective frame
of the high-resolution video that corresponds to the given
frame of the low-resolution video.

In some examples, at least a portion of the high-resolution
video may be buffered before the interaction and/or during
the interaction, while one or more other portions of the high-
resolution video may be buffered after the interaction when

10

15

20

25

30

35

40

45

50

55

60

65

14

those one or more other portions are not displayed to simulate
the interaction, but may need to be displayed to simulate other
interactions.

In some examples, the computing device may implement a
combination of video-based encoding and image-based
encoding. For example, the low-resolution images may be
provided as a video, and individual high-resolution images
may be provided for the desired frames. As such, in some
scenarios when a high resolution video is received, individual
high-resolution images could also be received to facilitate
close zooming or panning in the 3D image (and/or video)
viewer. Further, the high-resolution images may be associ-
ated with frame locations specified by callouts or thumbnails
in the user interface. In some examples, low-resolution
images may be sent to facilitate smooth interaction with the
3D image, and high-resolution images can be provided as part
of'a high-resolution video to take advantage of streaming and
delta encoding. Other examples are also possible.

FIGS. 5A-5E each show an example display of a swivel
viewer 500. It should be understood that the functions per-
formed with respect to the swivel viewer 500 may be per-
formed, additionally or alternatively, by another type of 3D
image viewer, such as a real-time, interactive 3D image
viewer, that is configured similarly to or differently from the
swivel viewer 500.

The swivel viewer 500 may be configured to display an
image 502 of an object. In some examples, the image 502 may
be an image captured from a rendering of the 3D object data
model having a front camera position. In some examples, a
user may click or otherwise input a modification to the swivel
viewer to cause other images of the object to be displayed. For
instance, the other images may be images of the object ren-
dered from separate positions around an axis of rotation of the
object. In one example, a user may click and drag to the left or
right to cause the image 502 displayed by the swivel viewer
500 to change. In another example, a user may perform a
gesture (e.g., a swipe) on a touchscreen interface to cause the
image 502 displayed by the swivel viewer 500 to be replaced
by a different image.

Additionally, the swivel viewer 500 includes multiple
snapshots 504 a user may select to cause the image 502
displayed by the swivel viewer 500 to rotate to a given image.
For instance, the snapshots 504 may include a perspective,
front, right, back, left, top, and bottom view images. In one
example, a user may select a top snapshot, and the image 502
may fade out. Subsequently, an image generated based on a
rendering of the 3D object data model from a top camera
position may fade in. In another example, a user may select a
right snapshot, and the image displayed by the swivel viewer
may animate through a number of images captured between
the front and right of the 3D object data model before dis-
playing an image generated based on a rendering of the 3D
object model from a right camera position. For instance, if the
right snapshot is an image captured at 90 degrees and the
image 502 displayed by the swivel viewer 500 is an image
captured at 0 degrees, the swivel viewer 500 may sequentially
display image at camera positions between 0 degrees and 90
degrees (e.g., 5 degrees, 10 degrees, 15 degrees . . . 85
degrees).

In one example implementation, 74 images of a 3D object
data model may be rendered by a server or by a computing
device. For example, images of the 3D object data model may
be generated from 72 predetermined positions covering 360
degrees around the 3D object data model. The images may,
for instance, be captured at 5 degree increments (i.e., 0
degrees, 5 degrees, 10 degrees . . . 355 degrees). Additionally,
a 73rd and 74th image may be generated for a top and bottom

US 9,240,070 B2

15
of the 3D object data model by rendering the 3D object data
model having a top and bottom camera position. The com-
puting device may then display the images via the swivel
viewer 500. Other example numbers of images and predeter-
mined positions are also possible, and the example is not
meant to be limiting. For instance, the swivel viewer 500 may
be modified to also include images captured at predetermined
positions around multiple axes/arcs of rotation of the object.

As discussed above, in some embodiments, the images of
the 3D object data model may comprise a video that is com-
pressed by a server and provided to the computing device. The
computing device may use native decompression video tech-
niques (e.g., decompression techniques commonly found
within web browsers for streaming video) to decompress the
video. Subsequently, the rendered images from the multiple
views of the 3D object data model may be recovered and
identified as individual images, and the computing device
may store the individual images within a memory of the
computing device that can be retrieved by the swivel viewer
500 for display.

In other examples, the images recovered by the swivel
viewer 500 may be caused to be sequentially displayed in the
swivel viewer 500. For instance, the swivel viewer 500 may
display each of the images briefly such that the 3D object data
model appears to have rotated 360 degrees. In some
examples, images recovered from the video may be progres-
sively displayed as the images are recovered. For instance, as
an image is recovered, the rendered image may be displayed
by the swivel viewer 500. In some instances, multiple ren-
dered images of the video may be displayed before the entire
video has been received by the swivel viewer 500.

In some examples, the first group of images recovered by
the swivel viewer 500 may be low-resolution images of the
object. In such examples, a server may render a second group
of images having a higher resolution that the first group of
images. For example, the second group of images may be
rendered based on a 3D object data model that is rendered
having a higher zoom level, more detailed geometry, and/or
more detailed material information. The second group of
images may also be images captured at the same predeter-
mined positions around the axis of rotation of the 3D object
data model as the first group of images. As such, the first and
second groups of images may be indexed such that a respec-
tive low-resolution image corresponds to a respective high-
resolution image. For instance, each pairing of low- and high-
resolution images may include the same view of the object.
Additionally, in some examples, the second group of images
may be combined into a video, compressed by the server, and
provided to the computing device.

As such, the computing device may decompress the video
of the high-resolution images and recover the individual
higher resolution images. In some examples, the high-reso-
Iution compressed video may be received after the low-reso-
Iution video is received, and the recovered high-resolution
images may replace the first stored individual low-resolution
images. For instance, if the swivel viewer 500 is caused to
display another image of the 3D object data model after the
second video has been received, the swivel viewer 500 may
display a high-resolution image captured based on the same
predetermined view as an originally stored image instead of
displaying the original, low-resolution image for that view-
point. In some examples, providing the high-resolution
images in the swivel viewer 500 may provide higher quality
images of the 3D object data model that can be zoomed in on
and optionally panned by a user without a discernible
decrease in image quality or resolution. For instance, an
image of the first group may be visibly pixelated when

20

25

40

45

16

zoomed in on. However, a high-resolution image recovered
from the second video may not be visibly pixelated when
zoomed in on.

Further, the method 400 of FIG. 4 can be performed when
a computing device receives low-resolution images of the
object and corresponding high-resolution images of the
object. FIGS. 5A-5E illustrate example implementations of
the method 400. As shown in FIG. 5A, when the swivel
viewer 500 has been initiated and the computing device is
receiving the plurality of low-resolution images, the swivel
viewer 500 may display a “Loading” message 506 over the
image 502 and ignore any user inputs to the swivel viewer 500
until the plurality of low-resolution images have been
received. The image 502 may be a low-resolution image or a
high-resolution image.

After the plurality of low-resolution images has been
received, the swivel viewer 500 may display a first high-
resolution image 508 of the object, as shown in FIG. 5B. Next,
the user may input a request to adjust a view of the image 508,
such as a request to rotate the image 360 degrees about a
vertical axis of the image. Upon receiving the request, the
computing device may then cause the swivel viewer 500 to
sequentially display low-resolution images in order to simu-
late the rotation of the image (e.g., display 30-60 images per
second). For instance, as shown in FIG. 5C, among the many
images that the swivel viewer 500 displays as part of the
sequential display, the swivel viewer 500 may briefly display
a low-resolution image 510 of the object depicting a 90-de-
gree rotated view of the object. And, as shown in FIG. 5D, the
swivel viewer 500 may display a final low-resolution image
512 ofthe object depicting about a 360-degree rotated view of
the object at the end of the sequential display. Then, as shown
in FIG. 5E, once the sequential display has been completed,
the computing device may cause the swivel viewer 500 to
display a particular high-resolution image 514 that corre-
sponds with the final low-resolution image 512. Other imple-
mentations of the example method 400 are possible as well.

In some examples, the computing device (e.g., the 3D
image viewer) may be configured to interpolate between two
views of'a 3D image. For instance, with video, the computing
device may implement motion-compensated frame interpo-
lation (MCFI) video processing in order to generate interme-
diate frames based on existing frames (e.g., images) that are
stored at the server or stored in memory at the computing
device. High-resolution images/frames may be displayed
while the user is not interacting with the 3D image, and
low-resolution images/frames may be displayed during user
interactivity with the 3D image, and the computing device
may use interpolation to fill in gaps between displayed low-
resolution images and displayed high-resolution images in
order to make the transitions from low-to-high resolution and
high-to-low resolution smooth and fluid and reduce discern-
ibility of the transitions.

FIG. 6 is a functional block diagram illustrating an
example computing device 600 used in a computing system
that is arranged in accordance with at least some embodi-
ments described herein. The computing device 600 may be a
personal computer, mobile device, cellular phone, touch-sen-
sitive wristwatch, tablet computer, video game system, or
global positioning system, and may be implemented to pro-
vide a system for viewing dynamic high-resolution 3D imag-
ery over a network, as described above. In a basic configura-
tion 602, computing device 600 may typically include one or
more processors 610 and system memory 620. A memory bus
630 can be used for communicating between the processor
610 and the system memory 620. Depending on the desired
configuration, processor 610 can be of any type including but

US 9,240,070 B2

17

not limited to a microprocessor (UP), a microcontroller (uC),
a digital signal processor (DSP), or any combination thereof.
A memory controller 615 can also be used with the processor
610, or in some implementations, the memory controller 615
can be an internal part of the processor 610.

Depending on the desired configuration, the system
memory 620 can be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 620 may include one or more applications
622, and program data 624. Application 622 may includea3D
algorithm 623 that is arranged to provide inputs to the elec-
tronic circuits, in accordance with the present disclosure.
Program data 624 may include 3D information 625 that could
be directed to any number of types of data. In some example
embodiments, application 622 can be arranged to operate
with program data 624 on an operating system.

Computing device 600 can have additional features or
functionality, and additional interfaces to facilitate commu-
nications between the basic configuration 602 and any
devices and interfaces. For example, data storage devices 640
can be provided including removable storage devices 642,
non-removable storage devices 644, or a combination
thereof. Examples of removable storage and non-removable
storage devices include magnetic disk devices such as flexible
disk drives and hard-disk drives (HDD), optical disk drives
such as compact disk (CD) drives or digital versatile disk
(DVD) drives, solid state drives (SSD), and tape drives to
name a few. Computer storage media can include volatile and
nonvolatile, non-transitory, removable and non-removable
media implemented in any method or technology for storage
of information, such as computer readable instructions, data
structures, program modules, or other data.

System memory 620 and storage devices 640 are examples
of computer storage media. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver-
satile disks (DVD) or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can be accessed by
computing device 600. Any such computer storage media can
be part of device 600.

Computing device 600 can also include output interfaces
650 that may include a graphics processing unit 652, which
can be configured to communicate to various external devices
such as display devices 660 or speakers via one or more A/V
ports 654 or a communication interface 670. The communi-
cation interface 670 may include a network controller 672,
which can be arranged to facilitate communications with one
or more other computing devices 680 over a network com-
munication via one or more communication ports 674. The
communication connection is one example of a communica-
tion media. Communication media may be embodied by com-
puter readable instructions, data structures, program mod-
ules, or other data in a modulated data signal, such as a carrier
wave or other transport mechanism, and includes any infor-
mation delivery media. A modulated data signal can be a
signal that has one or more of'its characteristics set or changed
in such a manner as to encode information in the signal. By
way of example, and not limitation, communication media
can include wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, radio
frequency (RF), infrared (IR) and other wireless media.

Computing device 600 can be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-

20

30

35

40

45

55

18

sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 600 can also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

In some embodiments, the disclosed methods may be
implemented as computer program instructions encoded on a
non-transitory computer-readable storage media in a
machine-readable format, or on other non-transitory media or
articles of manufacture. FIG. 7 is a schematic illustrating a
conceptual partial view of an example computer program
product 700 that includes a computer program for executing
a computer process on a computing device, arranged accord-
ing to at least some embodiments presented herein.

In one embodiment, the example computer program prod-
uct 700 is provided using a signal bearing medium 701. The
signal bearing medium 701 may include one or more pro-
gramming instructions 702 that, when executed by one or
more processors may provide functionality or portions of the
functionality described above with respect to FIGS. 1-6. In
some examples, the signal bearing medium 701 may encom-
pass a computer-readable medium 703, such as, but not lim-
ited to, a hard disk drive, a Compact Disc (CD), a Digital
Video Disk (DVD), a digital tape, memory, etc. In some
implementations, the signal bearing medium 701 may
encompass a computer recordable medium 704, such as, but
not limited to, memory, read/write (R/W) CDs, R/W DVDs,
etc. In some implementations, the signal bearing medium 701
may encompass a communications medium 705, such as, but
not limited to, a digital and/or an analog communication
medium (e.g., a fiber optic cable, a waveguide, a wired com-
munications link, a wireless communication link, etc.). Thus,
for example, the signal bearing medium 701 may be conveyed
by a wireless form of the communications medium 705 (e.g.,
a wireless communications medium conforming with the
IEEE 802.11 standard or other transmission protocol).

The one or more programming instructions 702 may be, for
example, computer executable and/or logic implemented
instructions. In some examples, a computing device such as
the computing device 600 of FIG. 6 may be configured to
provide various operations, functions, or actions in response
to the programming instructions 702 conveyed to the com-
puting device 600 by one or more of the computer readable
medium 703, the computer recordable medium 704, and/or
the communications medium 705.

Itshould be understood that arrangements described herein
are for purposes of example only. As such, those skilled in the
art will appreciate that other arrangements and other elements
(e.g. machines, interfaces, functions, orders, and groupings of
functions, etc.) can be used instead, and some elements may
be omitted altogether according to the desired results. Fur-
ther, many of the elements that are described are functional
entities that may be implemented as discrete or distributed
components or in conjunction with other components, in any
suitable combination and location.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope being indi-
cated by the following claims, along with the full scope of
equivalents to which such claims are entitled. It is also to be
understood that the terminology used herein is for the purpose
of describing particular embodiments only, and is not
intended to be limiting.

US 9,240,070 B2

19

What is claimed is:
1. A method, comprising:
receiving, at a computing device, a plurality of low-reso-
Iution images of an object and a plurality of high-reso-
Iution images of the object, wherein the plurality of
low-resolution images and the plurality of high-resolu-
tion images are indexed such that a respective low-reso-
Iution image of the object corresponds to a respective
high-resolution image of the object;
before a completion of the receiving of the plurality of
high-resolution images of the object:
causing a 3D image viewer to display a first high-reso-
lution image of the object from the plurality of high-
resolution images,
receiving an input associated with adjusting a view of
the object in the 3D image viewer,
based on the input, causing the 3D image viewer to
sequentially display at least a portion of the plurality
of low-resolution images of the object so as to adjust
the view of the object in the 3D image viewer, and
in response to a completion of the sequential display of
at least the portion of the plurality of low-resolution
images of the object, causing the 3D image viewer to

display a second high-resolution image of the object

that corresponds to a respective low-resolution image

displayed at the completion of the sequential display;

receiving, at the computing device, an indication of the

completion of receiving the plurality of high-resolution
images of the object;

receiving another input associated with adjusting a view of

the object in the 3D image viewer;

based on the another input and the indication of the

completion of receiving the plurality of high-resolution
images of the object, causing the 3D image viewer to
sequentially display at least a portion of the plurality of
high-resolution images of the object so as to adjust the
view of the object in the 3D image viewer; and

in response to a completion of the sequential display of at

least the portion of the plurality of high-resolution
images of the object, causing the 3D image viewer to
display another given high-resolution image of the
object.

2. The method of claim 1, wherein the plurality of low-
resolution images of the object and the plurality of high-
resolution images of the object are associated with views of
the object from predetermined positions around at least one
axis of rotation of the object, and

wherein a given low-resolution image of the object asso-

ciated with a given view corresponds to a given high-
resolution image of the object associated with the given
view.

3. The method of claim 1, further comprising:

while receiving the plurality of low-resolution images of

the object:

receiving inputs associated with adjusting views of the
object in the 3D image viewer;

causing the 3D image viewer to display the first high-
resolution image in response to the inputs; and

the computing device providing for display a notifica-
tion indicative of the receiving of the plurality of
low-resolution images of the object.

4. The method of claim 1, further comprising:

receiving, at the computing device, an indication of a

completion of the receiving of the plurality of low-reso-
Iution images of the object; and

in response to receiving the indication, causing the 3D

image viewer to provide for display an animation of the

20

30

35

40

45

55

20

object so as to indicate that the receiving of the plurality
of low-resolution images of the object has been com-
pleted.

5. The method of claim 1, further comprising:

determining a capability level of the computing device,
wherein the capability level includes one or more of a
bandwidth associated with the computing device and a
screen resolution of the computing device, and

wherein the receiving of the plurality of low-resolution
images of the object and the receiving of the plurality of
high-resolution images of the object are based on a com-
parison of the capability level of the computing device
with a performance threshold.

6. The method of claim 1, wherein the input includes one or
more of: arequest to zoom in on the object, a request to zoom
out from the object, a request to provide an alternate view of
the object, and a request to rotate the object around at least one
axis of rotation of the object.

7. A non-transitory computer-readable medium having
stored therein instructions, that when executed by a comput-
ing device, cause the computing device to perform functions
comprising:

receiving a plurality of low-resolution images of an object
and a plurality of high-resolution images of the object,
wherein the plurality of low-resolution images and the
plurality of high-resolution images are indexed such that
a respective low-resolution image of the object corre-
sponds to a respective high-resolution image of the
object;
before a completion of the receiving of the plurality of
high-resolution images of the object:
causing a 3D image viewer to display a first high-reso-
lution image of the object from the plurality of high-
resolution images,
receiving an input associated with adjusting a view of
the object in the 3D image viewer,
based on the input, causing the 3D image viewer to
sequentially display at least a portion of the plurality
of low-resolution images of the object so as to adjust
the view of the object in the 3D image viewer, and
in response to a completion of the sequential display of
at least the portion of the plurality of low-resolution
images of the object, causing the 3D image viewer to
display a second high-resolution image of the object
that corresponds to a respective low-resolution image
displayed at the completion of the sequential display;
receiving, at the computing device, an indication of the
completion of receiving the plurality of high-resolution
images of the object;
receiving another input associated with adjusting a view of
the object in the 3D image viewer;
based on the another input and the indication of the
completion of receiving the plurality of high-resolution
images of the object, causing the 3D image viewer to
sequentially display at least a portion of the plurality of
high-resolution images of the object so as to adjust the
view of the object in the 3D image viewer; and
in response to a completion of the sequential display of at
least the portion of the plurality of high-resolution
images of the object, causing the 3D image viewer to
display another given high-resolution image of the
object.
8. The non-transitory computer-readable medium of claim

7, wherein the plurality of low-resolution images of the object
comprise a low-resolution 3D object data model of the object,

US 9,240,070 B2

21

and wherein the plurality of high-resolution images of the
object comprise a high-resolution 3D object data model of the
object.

9. The non-transitory computer-readable medium of claim
7, wherein the plurality of low-resolution images of the object
comprises at least one low-resolution video, and wherein the
plurality of high-resolution images of the object comprises at
least one high-resolution video.

10. The non-transitory computer-readable medium of
claim 9, wherein causing the 3D image viewer to sequentially
display at least the portion of the plurality of low-resolution
images comprises causing the 3D image viewer to play a
given low-resolution video of the at least one low-resolution
video.

11. The non-transitory computer-readable medium of
claim 9, wherein the plurality of low-resolution images of the
object comprises frames of the at least one low-resolution
video, wherein the plurality of high-resolution images of the
object comprises frames of the at least one high-resolution
video, and wherein the input is a request to skip to a given
frame of the at least one low-resolution video that corre-
sponds to a respective frame of the at least one high-resolu-
tion video.

12. The non-transitory computer-readable medium of
claim 7, wherein at least the portion of the plurality of low-
resolution images of the object is sequentially displayed at a
frame rate of about 30-60 frames per second.

13. A system, comprising:

at least one processor; and

data storage comprising instructions executable by the at

least one processor to cause the system to perform func-
tions comprising:
receiving a plurality of low-resolution images of an
object and a plurality of high-resolution images of the
object, wherein the plurality of low-resolution images
and the plurality of high-resolution images are
indexed such that a respective low-resolution image
of the object corresponds to a respective high-resolu-
tion image of the object,
before a completion of the receiving of the plurality of
high-resolution images of the object:
causing a 3D image viewer to display a first high-
resolution image of the object from the plurality of
high-resolution images,
receiving an input associated with adjusting a view of
the object in the 3D image viewer,
based on the input, causing the 3D image viewer to
sequentially display at least a portion of the plural-
ity of low-resolution images of the object so as to
adjust the view of the object in the 3D image
viewer, and
in response to a completion of the sequential display
of at least the portion of the plurality of low-reso-

10

20

25

30

35

40

45

50

22

Iution images of the object, causing the 3D image
viewer to display a second high-resolution image
of the object that corresponds to a respective low-
resolution image displayed at the completion of the
sequential display;
receiving, at the computing device, an indication of the
completion of receiving the plurality of high-resolu-
tion images of the object;
receiving another input associated with adjusting a view
of the object in the 3D image viewer;
based on the another input and the indication of the
completion of receiving the plurality of high-resolu-
tion images of the object, causing the 3D image
viewer to sequentially display at least a portion of the
plurality of high-resolution images of the object so as
to adjust the view of the object in the 3D image
viewer; and
in response to a completion of the sequential display of
at least the portion of the plurality of high-resolution
images of the object, causing the 3D image viewer to
display another given high-resolution image of the
object.

14. The system of claim 13, the functions further compris-
ing:

providing a webpage, wherein the webpage includes the

3D image viewer.

15. The system of claim 13, wherein the 3D image viewer
includes a swivel viewer.

16. The system of claim 13, wherein the 3D image viewer
includes an interactive real-time 3D image viewer.

17. The system of claim 13, wherein the plurality of low-
resolution images of the object and the plurality of high-
resolution images of the object are associated with views of
the object from predetermined positions around at least one
axis of rotation of the object, and

wherein a given low-resolution image of the object asso-

ciated with a given view corresponds to a given high-
resolution image of the object associated with the given
view.
18. The system of claim 13, the functions further compris-
ing:
receiving an indication of a completion of the receiving of
the plurality of low-resolution images of the object; and

in response to receiving the indication, causing the 3D
image viewer to provide for display an animation of the
object so as to indicate that the receiving of the plurality
of low-resolution images of the object has been com-
pleted, wherein the animation includes about a 360
degree rotation of the object around an axis of rotation of
the object.

